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Abstract

Many practical machine learning systems, such as ranking and recommendation systems, consist of
two concatenated stages: retrieval and ranking. These systems present significant challenges in accurately
assessing and managing the uncertainty inherent in their predictions. To address these challenges, we
extend the recently developed framework of conformal risk control, originally designed for single-stage
problems, to accommodate the more complex two-stage setup. We first demonstrate that a straightforward
application of conformal risk control, treating each stage independently, may fail to maintain risk at
their pre-specified levels. Therefore, we propose an integrated approach that considers both stages
simultaneously, devising algorithms to control the risk of each stage by jointly identifying thresholds for
both stages. Our algorithm further optimizes for a weighted combination of prediction set sizes across all
feasible thresholds, resulting in more effective prediction sets. Finally, we apply the proposed method to
the critical task of two-stage ranked retrieval. We validate the efficacy of our method through extensive
experiments on two large-scale public datasets, MSLR-WEB and MS MARCO, commonly used for ranked
retrieval tasks.

1 Introduction

As machine learning models and systems become increasingly integrated into our daily lives, there is a
growing demand for the transparency and reliability in their predictions. Rather than accepting black-box
predictions, we urgently seek to understand the uncertainty of these models and systems. Consequently, it is
more important than ever to accurately measure and control the uncertainty of their predictions.

Among many solutions to the uncertainty problem, one received significant attention in the machine
learning field recently, which is conformal prediction (Vovk et al., 2005). It is distribution-free, statistically
rigorous, and easy to integrate with existing machine learning models, with the goal to create uncertainty
sets for predictions made by these models while satisfying a certain coverage requirement. Particularly, the
recently developed conformal risk control framework (Angelopoulos et al., 2024) extends conformal prediction
from traditional miscoverage control to a more general setting, where it controls the expected value of any
loss function. This significantly broadens its applicability to various new contexts.
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Most existing research on conformal prediction assumes a single-stage process for the machine learning
system under study, where the system processes the input to produce the prediction in a single step. However,
this assumption may not hold for many real-world machine learning systems, which often consist of two or
more concatenated stages. For example, consider the ranked retrieval problem, which involves retrieving and
ranking documents from a repository based on their relevance to a user’s query. Due to the large volume of
documents in the repository, search engines typically employ a two-stage or even multi-stage process (Yin
and et al, 2016; Khattab et al., 2020). In this setup, the initial stage retrieves a small number of candidate
documents from the repository, while subsequent stages refine and rank these documents before presenting
the final list to the user. Furthermore, different stages may have distinct optimization goals, and errors in
one stage can cascade to subsequent stages. This multi-stage setup adds complexity and presents a unique
challenge in accurately measuring and controlling uncertainty in ranked retrieval problems.

In this paper, we propose a two-stage conformal prediction method as our approach to quantify and
control the uncertainty inherent in these problems. Specifically, we extend the recently developed single-stage
conformal risk control framework to a two-stage setup, where each stage has its own risk control requirements.
Control is achieved by identifying parameters that satisfy the risk constraints for both stages. Furthermore,
to address the specific purpose of the two stages in ranked retrieval problems, we define the retrieval risk and
the ranking risk, respectively, and then apply our proposed two-stage conformal risk control method to derive
their corresponding prediction sets while respectively controlling the retrieval risk and the ranking risk at
pre-specified levels. This method does not rely on assumptions about the underlying ranking model and can
easily be integrated into an existing ranked retrieval system. It is also easily adaptable to similar multi-stage
risk control problems.

Our major contributions are as follows:

• We extended the conformal risk control framework to a two-stage setup, where there exists an inter-stage
dependency.

• We developed a novel two-stage conformal risk control method to control the risk of both stages within
guaranteed risk bounds.

• We properly formulated the uncertainty measurement for a typical two-stage ranked retrieval problem
using the extended conformal risk control framework.

• We thoroughly tested our proposed method on two datasets for real-life ranked retrieval tasks and
demonstrated the validity of the method.

1.1 Related Work

Conformal prediction, originally developed by Vladimir Vovk and his collaborators, has recently emerged as a
prominent and widely embraced approach for addressing uncertainty quantification in statistical machine
learning (Vovk et al., 1999, 2005). Angelopoulos and Bates provide a comprehensive survey of this field,
highlighting its significance and applications (Angelopoulos and Bates, 2021). Our research aligns with the
category of split conformal prediction (Papadopoulos et al., 2002; Lei et al., 2015), specifically relating to the
recently developed conformal risk control framework (Angelopoulos et al., 2024). This framework enhances
standard conformal prediction by extending specific coverage measurement to a general risk assessment
setting, offering a more comprehensive approach to evaluating prediction reliability, and therefore greatly
improves its adoption in real problems.
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The application discussed in our work bears some resemblance to Angelopoulos et al. (2023), which
employs the Learn-then-Test technique (Angelopoulos et al., 2021) to control the false discovery rate in
recommendation systems and optimize for recommendation diversity. However, despite tackling the same
ranked retrial problems, our work and that of Angelopoulos et al. differ in both their objectives and
methodologies.

The ranked retrieval problems have been extensively studied over the past few decades, with a broad
spectrum of ranking models introduced, ranging from conventional Information Retrieval (IR) models like
BM25 (Baeza-Yates and Ribeiro-Neto, 1999; Stephen and K., 1976) to modern learning-to-rank algorithms
(Liu, 2009). Recently, as deep learning has led to breakthroughs in various machine learning problems, it has
also been successfully adopted in the field of ranked retrieval (Severyn and Moschitti, 2015; Guo et al., 2016).
Depending on how the loss functions are defined, these methods can generally be categorized into three types:
pointwise algorithms (Crammer and Singer, 2001; Chu and Ghahramani, 2005), pairwise algorithms (Burges
et al., 2005; Freund et al., 2003), and listwise algorithms (Burges et al., 2006; Cao et al., 2007).

2 Two-stage Conformal Risk Control

2.1 Problem Formulation

We investigate a learning system that consists of two consecutive stages, where the second stage depends on
the output of the first stage. This setup is common in many real-world machine learning systems, such as
ranking systems, recommendation systems, question & answer systems and object detection systems.

Let D = {(Xi, Yi, Zi)}ni=1 be a set of exchangeable calibration data, with (Xi, Yi, Zi) ∈ X × Y × Z,
where Yi and Zi are the labeled responses of feature vector Xi corresponding to the two stages respectively.
For example, in a ranked retrieval problem, Xi is a query and its associated candidate documents, Yi

denotes the retrieval status of these documents, and Zi corresponds to their ranking positions. We let
(Xn+1, Yn+1, Zn+1) ∈ X × Y × Z denote the test point, where both Yn+1 and Zn+1 are unknown. Between
the two response variables y and z in D, we assume that there exists a link function S : Y → 2Z such that
for any (x, y, z) ∈ D ⊂ X × Y × Z, we have z ∈ S(y).

In the first stage, given a trained model f : X × Y → [0, 1], we post-process the model’s raw output to
construct a prediction set Cλ(x) = {y : f(x, y) ≥ 1 − λ} for x ∈ X . Different values of the parameter λ

determine a sequence of prediction sets {Cλ(x) : λ ∈ [0, 1]}. To measure the quality of the prediction set
Cλ, we consider a bounded loss function l(λ) := l(Cλ(x), y) ∈ [0, 1] for (x, y) ∈ X × Y. The function l(λ) is
assumed to be non-increasing and right-continuous in λ with l(0) = 1 and l(1) = 0. Let Li(λ) = l(Cλ(Xi), Yi)

be the first-stage loss of the ith data point where i = 1, . . . , n+ 1. The goal of this stage is to determine the
threshold value of the parameter λ̂ ∈ [0, 1] such that

E[Ln+1(λ̂)] ≤ α, (1)

where α ∈ [0, 1] is the pre-specified first-stage risk bound.

Similarly, given a trained model g : X × Z → [0, 1] for the second stage, we construct a prediction set
C̃λ,γ(x) = {z ∈ S(y) : f(x, y) ≥ 1− λ, g(x, z) ≥ 1− γ} for x ∈ X . Note that the parameter λ is present since
the output of the second stage depends on the output of the first stage. Therefore, different values of the
parameter pair (λ, γ) determine a sequence of prediction sets {C̃λ,γ(x) : (λ, γ) ∈ [0, 1]× [0, 1]}. Consider a
bounded loss function l̃(λ, γ) := l̃(C̃λ,γ(x), z) ∈ [0, 1] for (x, z) ∈ X × Z and assume it is non-increasing and
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right-continuous in both λ and γ, particularly l̃(0, 0) = 1 and l̃(1, 1) = 0. Let L̃i(λ, γ) = l̃(C̃λ,γ(Xi), Zi)) be
the second-stage loss of the ith data point where i = 1, . . . , n+ 1. The goal of this stage is to determine the
threshold value γ̂ ∈ [0, 1] of γ given the first-stage determined value λ̂ ∈ [0, 1] of λ such that

E[L̃n+1(λ̂, γ̂)] ≤ β, (2)

where β ∈ [0, 1] is the pre-specified second-stage risk bound.

2.2 Risk Control

To address a two-stage risk control task, a straightforward or ad hoc approach is to decompose it into two
independent one-stage tasks. This naturally leads to framing it as two separate one-stage conformal risk
control problems, with the standard conformal risk control algorithm applied to each stage— a method
referred to as AdHoc CRC in this paper. While this approach may seem intuitive, it often fails to adequately
control risk at the second stage, as demonstrated in a simple simulation study.

In the simulation, we generate a 2D synthetic dataset with two classes C1 and C2. Each data point is
associated with two response variables: one binary variable representing the class label and one continuous
variable. We design a two-stage learning task: Stage 1 identifies samples from C1, and Stage 2 predicts the
range of the continuous response values. The risk for Stage 1 is defined by the false negative rate (FNR) of
C1 samples, while the risk for Stage 2 is defined by the miscoverage rate of the true continuous response by
the predicted range for C1 samples. For this purpose, we build two MLPs for the two stages respectively,
one for classification, the other for regression. More details on the simulation can be found in the Technical
Appendix.

The actual loss values for both stages, calculated using the AdHoc method, are presented in Figure
1. Panel (a) shows that when α = 0.1, the risk of Stage 2 can be well controlled around 0.1 for β ≥ 0.1.

(a) Fix α = 0.1 while changing β value (b) Fix β = 0.1 while changing α value

Figure 1: Risk control on the synthetic dataset.

However, when β < 0.1, the risk of Stage 2 becomes unmanageable. Similarly, panel (b) illustrates that when
β = 0.1, the risk of Stage 2 can also be controlled around 0.1 for α ≤ 0.1. However, when α > 0.1, the risk of
Stage 2 exceeds control. This simulation illustrates that treating the two stages independently can lead to
inadequate risk control. This finding motivates us to develop an integrated approach that considers both
stages simultaneously.
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For a joint risk control of both stages, we need to carefully determine the feasible set of the conformal
parameters values (λ, γ) so that it satisfies risk requirements of both stages simultaneously. This entails the
following criteria:

1. For any pre-specified risk level α ∈ [0, 1], a feasible λ needs to satisfy the first stage risk requirement
E[Ln+1(λ)] ≤ α. Denote the subset of such λ by Λ∗

1. Since Li(λ) is non-increasing and right-continuous
in λ, then Λ∗

1 = [λ1, 1], where λ1 = inf{λ : E[Ln+1(λ)] ≤ α}.

2. For any pre-specified risk level β ∈ [0, 1], a feasible λ also needs to satisfy the second stage risk
requirement E[L̃n+1(λ, 1)] ≤ β. Here, γ is set to 1 to achieve the minimal risk value, as L̃n+1(λ, γ)

is non-increasing in γ for a fixed λ. Denote the subset of such λ by Λ∗
2. Therefore, Λ∗

2 = [λ2, 1],
where λ2 = inf{λ : E[L̃n+1(λ, 1)] ≤ β}. Following the first criteria, the feasible set of λ becomes the
intersection of Λ∗

1 and Λ∗
2, i.e., Λ∗ = Λ∗

1 ∩ Λ∗
2 = [max{λ1, λ2}, 1].

3. Furthermore, for any pre-specified risk level β ∈ [0, 1] and a specified λ ∈ Λ∗, a feasible γ needs to satisfy
the second stage risk control, i.e., E[L̃n+1(λ, γ)] ≤ β. Denote the subset of such γ by Γ∗(λ). Since L̃i(λ, γ)

is non-increasing in γ for a fixed λ, then Γ∗(λ) = [γ0(λ), 1], where γ0(λ) = inf{γ : E[Ln+1(λ, γ)] ≤ β}.
Particularly, γ0(λ) takes its minimal value γ̄0 when λ = 1, i.e., γ0(λ) ≥ γ̄0 = inf{γ : E[Ln+1(1, γ)] ≤ β}.

Combining the above three criteria, we have the feasible set of both parameters (λ, γ) as follows:

Ω∗ = {(λ, γ) : λ ∈ Λ∗, γ ∈ Γ∗(λ)}. (3)

The set Ω∗ consists of all possible values of (λ, γ) such that Equation (1) and (2) are both satisfied.

Proposition 1. For any pre-specified risk level α ∈ [0, 1] and β ∈ [0, 1], assuming the loss functions l(λ)

and l̃(λ, γ) that are both bounded, right-continuous and non-increasing in their respective arguments, if the
prediction sets of the two stages are constructed using (λ, γ) ∈ Ω∗, then it holds that E[Ln+1(λ)] ≤ α and
E[L̃n+1(λ, γ)] ≤ β.

The above proposition suggests the following three steps for a two-stage conformal risk control problem:

• Determine a subset Λ∗
1 = [λ1, 1] such that for any λ ∈ Λ∗

1, E[Ln+1(λ)] ≤ α;

• Determine a subset Λ∗
2 = [λ2, 1] such that for any λ ∈ Λ∗

2, E[L̃n+1(λ, 1)] ≤ β;

• For any λ ∈ Λ∗
1 ∩ Λ∗

2 = [max{λ1, λ2}, 1], determine a subset Γ∗(λ) = [γ0(λ), 1] such that for any
γ ∈ Γ∗(λ), E[L̃n+1(λ, γ)] ≤ β.

From a practical perspective, within the feasible set Ω∗, a solution that produces smaller prediction sets at
both stages is preferred. Therefore, after achieving the goal of the two-stage risk control, we aim to identify
(λ∗, γ∗) ∈ Ω∗ that minimizes the expected value of a weighted combination of the sizes of the prediction sets
derived at both stages, i.e.,

(λ∗, γ∗) = argmin
(λ,γ)∈Ω∗

E[w|Cλ(Xn+1)|+ (1− w)|C̃λ,γ(Xn+1)|] (4)

where |Cλ(Xn+1)| and |C̃λ,γ(Xn+1)| are the prediction set sizes for Xn+1 for the two stages, respectively, w
is a weight parameter to balance the importance between the two stages, particularly, if w = 1, we minimizes
the prediction size of the first stage, while if w = 0, we minimizes the prediction size of the second stage.

To find the threshold values of the unknown parameters λ1, λ2, and γ0(λ), assume a calibration dataset
D = {(Xi, Yi, Zi)}ni=1 is in force, then λ1 can be easily calculated using Equation (5) derived from the

5



standard conformal risk control algorithm Angelopoulos et al. (2024):

λ̂1 = inf

{
λ :

n∑
i=1

Li(λ) ≤ (n+ 1)α− 1

}
, (5)

while λ2, and γ0(λ) can be similarly calculated as the following:

λ̂2 = inf

{
λ :

n∑
i=1

L̃i(λ, 1) ≤ (n+ 1)β − 1

}
,

γ̂(λ) = inf

{
γ :

n∑
i=1

L̃i(λ, γ) ≤ (n+ 1)β − 1

}
,

(6)

where α and β ∈ [ 1
n+1 , 1].

Correspondingly, the feasible set Ω∗ can be estimated as:

Ω̂∗ = {(λ, γ) : λ ∈ [max{λ̂1, λ̂2}, 1], γ ∈ [γ̂0(λ), 1]} (7)

After identifying the estimated feasible set Ω̂∗ of (λ, γ), we aim to identify (λ̂, γ̂) ∈ Ω̂∗ that minimizes the a
weighted average of the sizes of the prediction sets derived at both stages across n calibration points, i.e.,

(λ̂, γ̂) = argmin
(λ,γ)∈Ω̂∗

1

n

n∑
i=1

[
w|Cλ(Xi)|+ (1− w)|C̃λ,γ(Xi)|

]
(8)

A greedy algorithm to determine (λ̂, γ̂) is presented in Alg 1. In the algorithm, we use a linear grid search
to find the optimal (λ̂, γ̂). It is worth mentioning that even with a linear search, the algorithm runs fast
because the steps that determine the feasible set significantly reduce the search space. Furthermore, once the
values of (λ̂, γ̂) are determined from the validation set, the inference on the test set requires only constant
time.

Remark 1. We need to emphasize that our developed data-driven conformal method does not have a proven
risk control for the second stage. However, in the Technical Appendix, we present a data-splitting approach
that offers a finite sample guarantee for a two-stage risk control.

3 Conformal Ranked Retrieval

We employ the above two-stage risk control method to a ranked retrieval problem, which typically comprises
a retrieval stage (referred to as candidate generation or L1) followed by a ranking stage (referred to as L2).
This setup is necessary due to the sheer volume of documents, which surpasses the capacity of a single ranking
model, particularly if it is resource-intensive. Consequently, a two-stage or even multi-stage process is devised
to handle this complexity (Yin and et al, 2016; Khattab et al., 2020). For a given query and a document
repository, in the retrieval stage, a set of candidate document is fetched. Subsequently, in the ranking stage,
we rank these documents in descending order based on their relevance to the query. The primary objective is
to ensure that the most relevant documents to the query are retrieved and ranked at high positions.

For clarity, we use superscripts for queries and subscripts for documents related to a query in this paper.
For i ∈ {1, . . . , n}, denote a query by qi and its associated documents by {dij}m

i

j=1, where mi is the number of
documents associated with the query qi. Denote the corresponding input feature vector by Xi = {xi

j}m
i

j=1,
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Algorithm 1 Determine (λ̂, γ̂) given risk levels α and β

Input: data {(Xi, Yi, Zi)}ni=1, first-stage risk level α, second-stage risk level β, weight parameter w

Parameter: step size η

Output: (λ̂, γ̂)

1: Calculate λ̂1 and λ̂2 using Equation (5) and (6).
2: λ′ ← max{λ̂1, λ̂2}, Smin ←∞
3: while λ′ ≤ 1 do
4: Calculate γ′ = γ̂(λ′) using Equation (6)
5: S′ ←

∑n
i=1 w|Cλ′(Xi)|+ (1− w)|C̃λ′,γ′(Xi)|

6: if S′ < Smin then
7: Smin ← S′, λ̂← λ′, γ̂ ← γ′

8: end if
9: λ′ ← λ′ + η

10: end while
11: return (λ̂, γ̂)

where each xi
j is generated by a specific feature extractor Φ and is given by xi

j = Φ(qi, dij) ∈ FΦ. We assume
that each pair of qi and dij is associated with a ground truth relevance score rij ∈ {0, 1, . . . , R}, where a
higher value of rij indicates a higher relevance of dij to qi. This score is only observable for the training
data and is hidden for the test data. Here we denote the relevant documents in the retrieval results of qi by
Yi = {dij : rij > 0}. In the ranking stage, with a focus on the ranking quality of documents with a ground
truth relevance level r0 or above, we denote the r0-relevant documents for qi as Zi = {dij : rij ≥ r0}. Here,
r0 ∈ {1, . . . , R} is pre-selected for specific problems. Documents with relevance score equal or higher than r0

are considered interchangeable in terms of their ranking positions.

Each stage is associated with a model learned on the training data for all queries, denoted by f for the
retrieval model and by g for the ranking model, respectively. The models are applied to the feature vector xi

j ,
and produce a predicted relevance score between dij and qi. Formally, f, g : FΦ → [0, 1]. The model’s form,
however, is not fixed; it could range from a simple Okapi BM25 model that counts word occurrences to a
more complex large language model that generates embeddings for embedding-based retrieval. Typically, the
model in the retrieval stage is more efficient but less powerful than the one in the ranking stage, thereby
achieving a balance between efficiency and effectiveness.

To measure the quality of the inference results, we define a loss function for each stage in the following
sections. For the retrieval stage, we assess the coverage of the ground truth document set by the retrieved
document set. For the ranking stage, we evaluate the difference in ranking order between these two sets. Our
goal is to control risks at both stages while maintaining a relatively small prediction set size. Keep in mind
that the prediction set size quantifies the uncertainty of the retrieval or ranking results—a larger set size
indicates higher uncertainty in the inference, and vice versa.

3.1 Conformal Retrieval Control

As defined in the previous section, Yi is the set of relevant documents with respect to the query qi, i.e., the set
of documents with ground truth relevance scores greater than 0. To represent the set of documents fetched by
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the model used in the retrieval stage, we define the retrieved document set D̂λ(Xi) for the retrieval stage as:

D̂λ(Xi) = {dij : f(xi
j) ≥ 1− λ}, (9)

where λ ∈ [0, 1] and f(xi
j) denotes the model score of xi

j calculated by the retrieval model f . Note that a good
retrieved document set D̂λ(Xi) associated with the query qi should aim to cover as many relevant documents
in Yi as possible. To measure the miscoverage of Yi by D̂λ(Xi), we define retrieval loss function l as:

l(D̂λ(Xi), Yi) = 1− |Yi ∩ D̂λ(Xi)|
|Yi|

. (10)

The goal of conformal retrieval control is to ensure E[l(D̂λ̂(Xn+1), Yn+1)] ≤ α for a predefined first-stage
risk level α ∈ [0, 1], by determining the threshold value of the parameter λ̂ ∈ [0, 1]. Observe that a higher value
of λ results in a larger retrieval set D̂λ(Xi) and, consequently, a smaller retrieval risk, indicating the retrieval
risk is non-increasing in λ. Furthermore, it is evident that the loss function defined in Equation (10) is right-
continuous in λ and bounded by [0, 1]. By verifying the conditions outlined in Theorem 1 in (Angelopoulos
et al., 2024), it becomes apparent that if the retrieval set is constructed using the threshold λ̂ as calculated
by Equation (5), the expected retrieval risk for a new query can be controlled at level α.

3.2 Conformal Ranking Control

We treat documents in Zi interchangeably for their ranking positions. To obtain a prediction set for Zi,
one can employ the ranking model g on the retrieved document set D̂λ(Xi) and ranking positions for the
prediction set can be obtained through their model scores from g in descending order. Now, for a parameter
pair (λ, γ) ∈ [0, 1]× [0, 1], we define the prediction set D̂λ,γ as:

D̂λ,γ(Xi) = {dij : f(xi
j) ≥ 1− λ, g(xi

j) ≥ 1− γ}, (11)

where g(xi
j) is the model score of xi

j obtained from the ranking model g. To measure the ranking quality,
we used the popular ranking metric nDCG (Järvelin and Kekäläinen, 2000), though other metrics may be
considered. We slightly adapted the traditional definition of nDCG to fit for our setting. The Discounted
Cumulative Gain (DCG) is defined as:

DCG
(
D̂λ,γ(Xi), Zi

)
=

∑
d(j)∈D̂λ,γ(Xi)

1(d(j) ∈ Zi)

log(j + 1)
, (12)

where d(j) is the document ranked at the jth position in D̂λ,γ(Xi). Notably, when D̂λ,γ(Xi) equals the whole
retrieved document set D̂λ(Xi), DCG attains its maximum value. The Ideal Discounted Cumulative Gain
(iDCG) for query qi is defined as:

iDCG (Zi) =

|Zi|∑
j=1

1

log(j + 1)
, (13)

where |Zi| is the size of Zi. Note that this value is only achievable in a perfect retrieval scenario where
all relevant documents for relevance level r0 and above are retrieved. Correspondingly, the Normalized
Discounted Cumulative Gain (nDCG) is defined as follows:

nDCG
(
D̂λ,γ(Xi), Zi

)
=

DCG
(
D̂λ,γ(Xi), Zi

)
iDCG(Zi)

. (14)

8



We can verify that nDCG(D̂λ,γ(Xi), Zi) ∈ [0, 1]. Accordingly, we define the loss function as:

l̃(D̂λ,γ(Xi), Zi) = 1− nDCG(D̂λ,γ(Xi), Zi). (15)

Given λ specified in the first stage, the ranking loss is a function of γ. We note that this loss function is
bounded in [0, 1] and non-increasing in γ. Recall that the aim of conformal ranking control is to ensure
E[l̃(D̂λ,γ(Xn+1), Zn+1)] ≤ β for a specified second-stage risk level β ∈ [0, 1].

4 Experiments and Results

We validate our methods on two widely-used public datasets for ranked retrieval tasks: the MSLR-WEB
dataset (10K)1(Qin and Liu, 2013), and the MS MARCO Question Answering dataset (V2.1)2 (Bajaj et al.,
2016). Due to space constraints, we present the results on the MSLR-WEB dataset in this section, while
leaving the results on the MS MARCO dataset in the technical appendix.

For both tasks, models are trained on a hold-out training set, where we do not particularly tune the model
for optimal ranking results, as it is not the primary focus of this work. Subsequently, we randomly split the re-
maining labeled data into validation and test sets using a 50-50 ratio. We run the experiment for 100 times and
report the averaged results. Our code is available at https://github.com/git4review/conformal_ranked_retrieval.

In the experiments, to investigate the impact of different values of α and β, we firstly fixed β = 0.2 and
varied the α values, then fixed α = 0.3 and varied the β values. For each pair of (α, β), we compare the
following four methods:

• CRC: our proposed two-stage conformal risk control method

• LTT: the multi-risk version of the Learn-Then-Test method, as described by Angelopoulos et al. (2021)
in section 2.4

• AdHoc CRC: applying the conventional conformal risk control method independently for each of the
two stages

• AdHoc LTT: applying the conventional Learn-Then-Test method sequentially for the two stages

More detailed setup information about these methods can be found in the technical appendix: Experiments
Setup.

4.1 MSLR-WEB dataset

The MSLR-WEB dataset, a large-scale Learning-to-Rank dataset released by Microsoft Research, is curated
through a commercial web search engine (Microsoft Bing). It comprises 10K queries, each associated with an
average of 120 documents. The dataset consists of 136-dimensional feature vectors extracted from query-url
pairs, accompanied by human-assigned relevance judgment labels ranging from 0 (irrelevant) to 4 (perfectly
relevant).

For the L1 model, i.e., the retrieval model, we train a 3-layer MLP, with 128 and 32 neurons in the hidden
layers. For the L2 model, i.e., the ranking model, we utilize the LambdaRank model (Burges et al., 2006)
implemented by the open-source Pytorch package PT-Rank (Yu, 2020). This choices of the model emulates

1Available at www.microsoft.com/en-us/research/project/mslr
2Available at https://microsoft.github.io/msmarco/
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real search engine practices, where the retrieval stage employs a lightweight model for efficiency, while the
ranking stage adopts a more sophisticated model for quality.

Figure 2 shows the results on different α values while fixing β = 0.2. It can be seen that the retrieval
risks for both CRC and LTT firstly increase with α when α is small, then become flattened when α is large,
in order to control their ranking risks. The Ad-hoc CRC and Ad-hoc LTT retrieval risks, on the other hand,
monotonically increase with α throughout the range, resulting the uncontrolled ranking risks. Between CRC
and LTT, the former controls the ranking risk at its exact target value 0.2, while the latter provides a more
strict retrieval risk control than the former, therefore produces a larger retrieval size. LTT also misses the
ranking risk control target by a considerable margin.

(a) Actual retrieval risks (b) Retrieval prediction sizes

(c) Actual ranking risks (d) Ranking prediction sizes

Figure 2: Risk and prediction sizes for different α at a fixed β = 0.2 on MSLR-WEB dataset.

Figure 3 shows the results on different β values while fixing α = 0.3. It can be seen that the retrieval
risks for both CRC and LTT firstly increase with β, before becoming flattened at the fixed α value 0.3.
Between the two methods, LTT has a smaller retrieval risk than CRC, resulting in a larger prediction size.
Consequently, the ranking risks of CRC is well controlled by their target values as shown by the blue diagonal
line, while the ranking risk of LTT is loosely controlled. On the other hand, however, both Ad-hoc methods
control their retrieval risks at the targeted value 0.3, while fail to control their ranking risks for small β
values.
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(a) Actual retrieval risks (b) Retrieval prediction sizes

(c) Actual ranking risks (d) Ranking prediction sizes

Figure 3: Risk and prediction sizes for different β at a fixed α = 0.3 on MSLR-WEB dataset.

5 Conclusion & Discussion

We extended the recently developed single-stage conformal risk control framework to a more complex and
widely applicable two-stage setting, creating a new two-stage conformal risk control method. We then applied
this method to a typical ranked retrieval problem. The method adjusts its prediction set sizes for different
queries, while ensuring that retrieval and ranking risks remain within predefined bounds. Empirical results
from real-world tasks underscore the effectiveness of the proposed method.

Several pertinent questions warrant further exploration. In our current research, we exclusively employed
nDCG to measure ranking quality, given its prevalence in numerous practical ranked retrieval tasks. However,
there exist various other ranking metrics, such as MAP (mean average precision) and MRR (mean reciprocal
rank), among others. Some metrics may not adhere to the monotonic risk condition required for the application
of our control algorithm. It would be interesting to explore how to define proper risk functions for those
metrics, or to adapt the risk control framework so that it is applicable to more general risk functions. We
intend to investigate these questions in our future work.
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A Theoretic Result

A.1 Data splitting approach

To obtain finite sample risk control guarantee, we consider randomly splitting datasetD = {(Li(λ), L̃i(λ, γ))}i∈[n]

into D1 = {(Li(λ), L̃i(λ, γ))}i∈I1
and D2 = {(Li(λ), L̃i(λ, γ))}i∈I2

with |I1| = n1, |I2| = n2, and n1+n2 = n.
Furthermore, we assume min{α, β}(n1 + 1) ≥ 1 and β(n2 + 1) ≥ 1. Accordingly, define

λ̂1(I1) = inf

{
λ :

∑
i∈I1

Li(λ) ≤ (n1 + 1)α− 1

}
,

λ̂2(I1) = inf

{
λ :

∑
i∈I1

L̃i(λ, 1) ≤ (n1 + 1)β − 1

}
.

Additionally, if
∑

i∈I2
L̃i(λ, 1) ≤ (n2 + 1)β − 1, define

γ̂(λ, I2) = inf

{
γ :

∑
i∈I2

L̃i(λ, γ) ≤ (n2 + 1)β − 1

}
,

and set γ̂(λ, I2) = 2 otherwise. Subsequently, we can define the corresponding feasible set as

Ω̂∗
S = {(λ, γ) :λ ∈ [max{λ̂1(I1), λ̂2(I1)}, 1],

γ̂(λ, I2) ≤ 1, γ ∈ [γ̂(λ, I2), 1]}.
(16)

Theorem 1. Under the same set of assumptions as in Proposition 1, for any parameter pair (λ, γ) ∈ Ω̂∗
S, we

have

ELn+1(λ) ≤ α and EL̃n+1(λ, γ) ≤ β.

Proof. Consider (λ, γ) ∈ Ω̂∗
S. By definition, λ ≥ λ̂1(I1) ∨ λ̂2(I1). According to Theorem 1 in Angelopoulos

et al. (2024), we have
ELn+1(λ̂1(I1)) ≤ α and EL̃n+1(λ̂2(I1), 1) ≤ β.

Consequently, we have ELn+1(λ) ≤ α and EL̃n+1(λ, 1) ≤ β by the monotonicity of the loss functions.
Moreover, by the tower property of conditional expectation, we have

EL̃n+1(λ, γ̂(λ, I2)) = E
{
E
{
L̃n+1(λ, γ̂(λ, I2))|D1

}}
.

By conditioning on the D1, λ can be viewed as a constant. With a direct application of Theorem 1
in Angelopoulos et al. (2024), we have

E
{
L̃n+1(λ, γ̂(λ, I2))|D1

}
≤ β.

Therefore, by the monotonicity of the loss function, we conclude

EL̃n+1(λ, γ) ≤ EL̃n+1(λ, γ̂(λ, I2)) ≤ β. (17)

B Details on Simulation & Experiments Setup

This section provides detail of settings used for the simulation and experiments.
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B.1 Simulation Setup

We present a simulation3 of a simple two-stage risk control task on a 2D synthetic dataset consisting of two
classes: C1 and C2. Each class contains 2,000 data points sampled from distinct two-dimensional Gaussian

distributions with an identity covariance matrix

[
1 0

0 1

]
. Class C1 has a mean vector (−1, 0), while class C2

has a mean vector (1, 0), as shown in Figure 4. For each data xi = (xi1, xi2) ∈ C1, except for its class label yi,
we further associate a continuous response value zi that equals to its distance to the centroid (−1, 0), i.e.,
zi =

√
(xi1 + 1)2 + x2

i2, as indicated by its color. Data points in C2 are depicted in gray color.

Figure 4: 2D synthetic data

For the first stage, to classify the two classes, we train a MLP with three layers, where each of the two
linear hidden layers has 16 neurons. The model is trained using cross entropy loss with 10 iterations at a
learning rate 0.001.

For the second stage, to predict the response value, we train a MLP with three layers, where each of the
two linear hidden layers has 64 neurons. The model is trained using the mean squared error loss with 20
iterations at a learning rate 0.001.

To control the first stage risk, during the test, a test data is classified as the class C1 if its model score
f(xi) ≥ 1− λ, where λ is the first stage conformal parameter. The first stage risk is the false negative rate of
class C1.

To control the second stage risk, for a test data xi, in addition to predict its response value ẑi, we also
produce a predicted response range C̃(xi) = [ẑi − γ, ẑi + γ], where γ is the second stage conformal parameter.
The risk used is the mis-coverage rate of the labeled response zi by C̃(xi).

3A notebook file for this simulation can be found at https://github.com/git4review/conformal_ranked_retrieval.
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We use a 7:3 ratio to randomly split the data into validation and test datasets, and the results are the
average over 100 random runs.

B.2 Experiments Setup

In our experiments with real-world data, we compared our method, CRC, with three other approaches: LTT,
AdHoc CRC, and AdHoc LTT. This section provides details on the setup of these three methods.

The LTT method, developed by Angelopoulos et al. (2021), is a multiple hypothesis testing framework
for risk control. To adapt it for a two-stage setting, we follow the "Multiple risks and multi-dimensional"
formulation discussed in section 2.4 of their work, where we define the null hypothesis as

Hj = {L(λj) > α or L̃(λj , γj) > β},

and apply a family-wise error rate (FWER) controlling procedure to test Hj .

Specifically, we employed the fixed sequence testing approach to control the family-wise error rate (FWER).
This involved performing a linear search on a two-dimensional parameter grid, where the range [0, 1] for each
parameter was discretized into 100 equi-spaced elements. We then evaluated the two-stage risks at each of
the 10,000 points on the grid. To calculate the p-value, we use the Hoeffding-Bentkus inequality, and for
FWER control, we use the Bonferroni correction.

For the two Ad-hoc methods, we essentially treat them as two sequential single-stage risk control problems.
Specifically, we firstly calculate the λ̂ that controls the first stage risk. With this value, we build the prediction
set Cλ̂(Xi) for each (Xi, Yi, Zi) ∈ D as the validation input for the second stage, then we apply the same
control algorithm to calculate γ̂. Similarly, for Ad-hoc LTT, we discritized the range [0, 1] into 100 equi-spaced
elements for both λ and γ to faciliate the fixed sequence testing, and we also use the Hoeffding-Bentkus
inequality to calculate the p-value, as well as the Bonferroni correction for FWER control.

C Experiment Results on MS MARCO Dataset

MS MARCO (MicroSoft MAchine Reading COmprehension) (Bajaj et al., 2016) is a collection of large-scale
datasets focused on machine reading comprehension. For our experiment, we opted for the Question and
Answering v2.1 task within this dataset. This dataset comprises approximately 100K queries and 1M passages,
with each query has 10 candidate passages. The objective is to select the most relevant passage from the
provided candidates to answer the corresponding query. Each passage is associated with a binary flag
is_selected, where 1 denotes it is a good answer and 0 otherwise.

In the retrieval (L1) stage, we utilized Okapi BM25 (Stephen and K., 1976), which provides a TF-IDF
like score function to measure the relevance between the query and the document. In our work, we follow the
definition by (Robertson and Zaragoza, 2009). Specifically, for a given query q with keywords w1, . . . , wn, the
BM25 score of a candidate document D is defined as:

BM25(q,D) =

n∑
i=1

IDF(wi)f(wi, D) · (k1 + 1)

f(wi, D) + k1 · (1− b+ b · |D|
avgdl )

,

where f(wi, D) is the frequency of wi in D, |D| is the total number of words in D, avgdl is the average length
of the documents in the repository, k1 and b are hyper-parameters. In our experiments, we choose k1 = 2,
b = 0.75. The IDF (wi) is the inverse document frequency of wi, defined as

IDF(wi) = ln

(
N − n(wi) + 0.5

n(wi) + 0.5
+ 1

)
,
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where N is the total number of documents in the repository, and n(wi) is the number of documents containing
wi.

For the ranking (L2) stage, we choose the e5-base model, a 12-layer encoder large language model trained
through a weakly supervised constrastive learning on a large scale text pair dataset CCPairs (Wang et al.,
2022). This model is much more resource-intensive to deploy and run compared to a simple score function
such as BM25. In our experiment, we leverage the HuggingFace transformer package4 to encode both the
query and the document. We choose a maximum window size 512 for tokenization, and use an average pooling
on the last hidden layer to produce the final 768 dimentional embedding vectors. Subsequently, we calculate
the cosine similarity between the query embedding and the document embedding to obtain the relevance
score for ranking the documents.

Figure 6 shows the results on different β values while fixing α = 0.3, while Figure 5 shows the results on
different α values while fixing β = 0.2, with similar observations as on the MSLR-WEB dataset.

(a) Actual retrieval risks (b) Retrieval prediction sizes

(c) Actual ranking risks (d) Ranking prediction sizes

Figure 5: Risk and prediction sizes for different α at a fixed β = 0.2 on MS MARCO dataset.

4Available at https://huggingface.co/intfloat/e5-base.
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(a) Actual retrieval risks (b) Retrieval prediction sizes

(c) Actual ranking risks (d) Ranking prediction sizes

Figure 6: Risk and prediction sizes for different β at a fixed α = 0.3 on MS MARCO dataset.
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